首页> 外文OA文献 >Optimal Energy Allocation for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgments and Energy Harvesting Constraints
【2h】

Optimal Energy Allocation for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgments and Energy Harvesting Constraints

机译:分组丢包卡尔曼滤波的最优能量分配   与不完全致谢和能量收获约束的链接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a design methodology for optimal transmission energyallocation at a sensor equipped with energy harvesting technology for remotestate estimation of linear stochastic dynamical systems. In this framework, thesensor measurements as noisy versions of the system states are sent to thereceiver over a packet dropping communication channel. The packet dropoutprobabilities of the channel depend on both the sensor's transmission energiesand time varying wireless fading channel gains. The sensor has access to anenergy harvesting source which is an everlasting but unreliable energy sourcecompared to conventional batteries with fixed energy storages. The receiverperforms optimal state estimation with random packet dropouts to minimize theestimation error covariances based on received measurements. The receiver alsosends packet receipt acknowledgments to the sensor via an erroneous feedbackcommunication channel which is itself packet dropping. The objective is to design optimal transmission energy allocation at theenergy harvesting sensor to minimize either a finite-time horizon sum or a longterm average (infinite-time horizon) of the trace of the expected estimationerror covariance of the receiver's Kalman filter. These problems are formulatedas Markov decision processes with imperfect state information. The optimaltransmission energy allocation policies are obtained by the use of dynamicprogramming techniques. Using the concept of submodularity, the structure ofthe optimal transmission energy policies are studied. Suboptimal solutions arealso discussed which are far less computationally intensive than optimalsolutions. Numerical simulation results are presented illustrating theperformance of the energy allocation algorithms.
机译:本文提出了一种在配备了能量收集技术的传感器上优化传输能量分配的设计方法,该传感器用于线性随机动力系统的远程状态估计。在此框架中,传感器测量作为系统状态的嘈杂版本通过丢包通信信道发送到接收器。信道的丢包概率取决于传感器的传输能量和随时间变化的无线衰落信道增益。传感器可以访问能量收集源,与具有固定能量存储的常规电池相比,能量收集源是永久但不可靠的能量源。接收器执行具有随机数据包丢失的最佳状态估计,以根据接收到的测量值最小化估计误差协方差。接收器还会通过错误的反馈通信通道将数据包接收确认发送给传感器,该错误的通信通道本身就是数据包丢失。目的是在能量采集传感器上设计最佳的传输能量分配,以最小化接收器卡尔曼滤波器的预期估计误差协方差轨迹的有限时间范围总和或长期平均值(无限时间范围)。这些问题被表述为状态信息不完善的马尔可夫决策过程。通过使用动态编程技术可获得最佳的传输能量分配策略。利用亚模量的概念,研究了最优传输能量策略的结构。还讨论了次优解决方案,该解决方案的计算强度远低于最佳解决方案。数值仿真结果表明了能量分配算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号